Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа кп. Горные Ключи Кировского района» Приморского края

ПРОЕКТ РАБОЧЕЙ ПРОГРАММЫ ПО ХИМИИ

для 11 класса, / учебник О.С.Габриелян, И.Г. Остроумов, С.А.Сладков (углубленный уровень) на 2023-2024 учебный год

Разработала Штефан С.В., учитель биологии и химии

Планируемые результаты освоения учебного предмета.

Данная программа обеспечивает достижение необходимых личностных, метапредметных, предметных результатов освоения курса, заложенных в ФГОС ООО.

Изучение химии даёт возможность достичь следующих личностных результатов:

- в ценностно-ориентационной сфере осознание российской гражданской идентичности, патриотизма, чувства гордости за российскую химическую науку;
- в трудовой сфере готовность к осознанному выбору дальнейшей образовательной траектории в высшей школе, где химия является профилирующей дисциплиной;
- в познавательной (когнитивной, интеллектуальной) сфере умение управлять своей познавательной деятельностью, готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности; формирование навыков экспериментальной и исследовательской деятельности; участие в публичном представлении результатов самостоятельной познавательной деятельности; участие в профильных олимпиадах различных уровней в соответствии с желаемыми результатами и адекватной самооценкой;
- в сфере сбережения здоровья принятие и реализация ценностей здорового и безопасного образа жизни, неприятие вредных привычек (курения, употребления алкоголя, наркотиков) на основе знаний о свойствах наркологических и наркотических веществ; соблюдение правил техники безопасности при работе с веществами, материалами и процессами в учебной (научной) лаборатории и на производстве.

Метапредметные результаты освоения выпускниками средней (полной) школы курса химии:

использование умений и навыков различных видов познавательной деятельности, применение основных методов познания (системно-информационный анализ, наблюдение, измерение, проведение эксперимента, моделирование, исследовательская деятельность) для изучения различных сторон окружающей действительности;

владение основными интеллектуальными операциями: формулировка гипотезы, анализ и синтез, сравнение и систематизация, обобщение и конкретизация, выявление причинно следственных связей и поиск аналогов;

познание объектов окружающего мира от общего через особенное к единичному;

умение генерировать идеи и определять средства, необходимые для их реализации;

умение определять цели и задачи деятельности, выбирать средства реализации цели и применять их на практике;

использование различных источников для получения химической информации, понимание зависимости содержания и формы представления информации от целей коммуникации и адресата;

умение продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты;

готовность и способность к самостоятельной информационно-познавательной деятельности, включая умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников;

умение использовать средства информационных и коммуникационных технологий (далее — И КТ) в решении когнитивных, коммуникативных и организационных задач с соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности;

владение языковыми средствами, в том числе и языком химии, — умение ясно, логично и точно излагать свою точку зрения, использовать адекватные языковые средства, в том числе и символьные (химические знаки, формулы и уравнения).

Предметными результатами изучения химии на углубленном уровне на ступени среднего (полного) общего образования являются:

знание (понимание) характерных признаков важнейших химических понятий: вещество, химический элемент, атом, молекула, относительные атомные и молекулярные массы, ион, изотопы, химическая связь (ковалентная полярная и неполярная, ионная, металлическая, водородная), электроотрицательность, аллотропия, валентность, степень окисления, моль, молярная масса, молярный объем, вещества ионного, молекулярного и немолекулярного строения, растворы, электролиты и неэлектролиты, электролитическая диссоциация, гидролиз, окислитель и восстановитель, окисление и восстановление, электролиз, скорость химической реакции, катализаторы и катализ, обратимость химических реакций, химическое равновесие, смещение равновесия, тепловой эффект реакции, углеродный скелет, функциональная группа, изомерия (структурная и пространственная) и гомология, основные типы (соединения, разложения, замещения, обмена), виды (гидрирования и дегидрирования, гидратации и дегидратации, полимеризации и деполимеризации, поликонденсации и изомеризации, каталитические и некаталитические, гомогенные и гетерогенные) и разновидности (ферментативные, горения, этерификации, крекинга, ри- форминга) реакций в неорганической и органической химии, полимеры, биологически активные соединения;

выявление взаимосвязи химических понятий для объяснения состава, строения, свойств отдельных химических объектов и явлений;

применение основных положений химических теорий: теории строения атома и химической связи, Периодического закона и Периодической системы химических элементов Д. И. Менделеева, теории электролитической диссоциации, протонной теории, теории строения органических соединений, закономерностей химической кинетики — для анализа состава, строения и свойств веществ и протекания химических реакций;

умение классифицировать неорганические и органические вещества по различным основаниям; установление взаимосвязей между составом, строением, свойствами, практическим применением и получением важнейших веществ;

знание основ химической номенклатуры (тривиальной и международной) и умение назвать неорганические и органические соединения по формуле и наоборот;

определение: валентности, степени окисления химических элементов, зарядов ионов; видов химических связей в соединениях и типов кристаллических решеток; пространственного строения молекул; типа гидролиза и характера среды водных растворов солей; окислителя и восстановителя; окисления и восстановления; принадлежности веществ к различным классам неорганических и органических соединений; гомологов и изомеров; типов, видов и разновидностей химических реакций в неорганической и органической химии;

умение характеризовать: s-, p- и J-элементы по их положению в Периодической системе Д. И. Менделеева; общие химические свойства простых веществ — металлов и неметаллов; химические свойства основных классов неорганических и органических соединений в плане общего, особенного и единичного;

объяснение: зависимости свойств химических элементов и их соединений от положения элемента в Периодической системе Д. И. Менделеева; природы химической связи (ионной, ковалентной, металлической, водородной); зависимости свойств неорганических и органических веществ от их состава и строения; сущности изученных видов химических реакций: электролитической диссоциации, ионного обмена, окислительно-восстановительных; влияния различных факторов на скорость химической реакции и на смещение химического равновесия; механизмов протекания реакций между органическими и неорганическими веществами;

умение: составлять уравнения окислительно-восстановительных реакций с помощью метода электронного баланса; проводить расчеты по химическим формулам и уравнениям; проводить химический эксперимент (лабораторные и практические работы) с соблюдением требований к правилам техники безопасности при работе в химическом кабинете (лаборатории).

Выпускник на углубленном уровне научится:

понимать химическую картину мира как составную часть целостной научной картины мира; раскрывать роль химии и химического производства как производительной силы современного общества;

формулировать значение химии и её достижений в повседневной жизни человека; устанавливать взаимосвязи между химией и другими естественными науками;

-- формулировать Периодический закон Д. И. Менделеева и закономерности изменений в строении и свойствах химических элементов и образованных ими веществ на основе Периодической системы как графического отображения Периодического закона;

- формулировать основные положения теории химического строения органических соединений А. М. Бутлерова, раскрывать основные направления этой универсальной теории зависимости свойств веществ не только от химического, но также и от электронного и пространственного строения и иллюстрировать их примерами из органической и неорганической химии;
 аргументировать универсальный характер химических понятий, законов и теорий для объяснения состава, строения, свойств и закономерностей объектов (веществ, материалов и процессов) органической и неорганической химии;
 характеризовать s-, p- и J-элементы по их положению в Периодической системе Д. И. Менделеева;
 классифицировать химические связи и кристаллические решетки, объяснять механизмы их образования и доказывать единую природу химических связей (ковалентной, ионной,
- объяснять причины многообразия веществ на основе природы явлений изомерии, гомологии, аллотропии;

металлической, водородной);

- классифицировать химические реакции в неорганической и органической химии по различным основаниям и устанавливать специфику типов реакций от общего через особенное к единичному;
- характеризовать гидролиз как специфичный обменный процесс и раскрывать его роль в живой и неживой природе;
- характеризовать электролиз как специфичный окислительно-восстановительный процесс и его практическое значение;

характеризовать коррозию металлов как окислительно - восстановительный процесс и предлагать способы защиты;

описывать природу механизмов химических реакций, протекающих между органическими и неорганическими веществами;

классифицировать неорганические и органические вещества по различным основаниям;

характеризовать общие химические свойства важнейших классов неорганических и органических соединений в плане от общего через особенное к единичному;

использовать знаковую систему химического языка для отображения состава (химические формулы) и свойств (химические уравнения) веществ;

использовать правила и нормы международной номенклатуры для названий веществ по формулам и, наоборот, для составления молекулярных и структурных формул соединений по их названиям;

знать тривиальные названия важнейших в бытовом и производственном отношении неорганических и органических веществ;

характеризовать свойства, получение и применение важнейших представителей типов и классов органических соединений (предельных, непредельных и ароматических углеводородов, кислородсодержащих и азотсодержащих соединений, а также биологически активных веществ); устанавливать зависимость экономики страны от добычи, транспортировки и переработки углеводородного сырья (нефти, каменного угля и природного газа);

экспериментально подтверждать состав и свойства важнейших представителей изученных классов неорганических и органических веществ с соблюдением правил техники безопасности для работы с химическими веществами и лабораторным оборудованием;

характеризовать скорость химической реакции и ее зависимость от различных факторов;

описывать химическое равновесие и предлагать способы его смещения в зависимости от различных факторов;

производить расчеты по химическим формулам и уравнениям на основе количественных отношений между участниками химических реакций;

характеризовать важнейшие крупнотоннажные химические производства (серной кислоты, аммиака, метанола, переработки нефти, коксохимического производства, важнейших металлургических производств) с точки зрения химизма процессов, устройства важнейших аппаратов, научных принципов производства, экологической и экономической целесообразности;

соблюдать правила экологической безопасности во взаимоотношениях с окружающей средой при обращении с химическими веществами, материалами и процессами.

Выпускник на углубленном уровне получит возможность научиться:

использовать методы научного познания при выполнении проектов и учебно-исследовательских задач химической тематики;

прогнозировать строение и свойства незнакомых неорганических и органических веществ на основе аналогии;

прогнозировать течение химических процессов в зависимости от условий их протекания и предлагать способы управления этими процессами;

устанавливать внутрипредметные взаимосвязи химии на основе общих понятий, законов и теорий органической и неорганической химии и межпредметные связи с физикой (строение атома и вещества) и биологией (химическая организация жизни и новые направления в технологии — био- и нанотехнологии);

раскрывать роль полученных химических знаний в будущей учебной и профессиональной деятельности;

проектировать собственную образовательную траекторию, связанную с химией, в зависимости от личных предпочтений и возможностей отечественных вузов химической направленности;

аргументировать единство мира веществ установлением генетической связи между неорганическими и органическими веществами;

владеть химическим языком, необходимым фактором успешности в профессиональной деятельности;

характеризовать становление научной теории на примере открытия Периодического закона и теории строения органических и неорганических веществ;

принимать участие в профильных конкурсах (конференциях, олимпиадах) различного уровня, адекватно оценивать результаты такого участия и проектировать пути повышения предметных достижений;

критически относиться к псевдонаучной химической информации, получаемой из разных источников;

--- понимать глобальные проблемы, стоящие перед человечеством (экологические, энергетические, сырьевые), и предлагать пути их решения, в том числе и с помощью химии.

2. тематическое планирование

п/п	Разделы, темы		
		Количество часов	Практическая часть (пр.р./контр.р.)
1	Строение атома. Периодический закон и периодическая система химических элементов Д.И.Менделеева	10	0/1
2	Химическая связь и строение вещества	10	1/1
3	Дисперсные системы и растворы	9	1/1
4	Закономерности протекания химических реакций и физико-химических процессов	9	1/0
5.	Химические реакции в водных растворах	12	3/1
6.	Окислительно-восстановительные процессы	9	0/1
7	Неметаллы	23	2/1
8.	Металлы	16	2/1
9.	резерв	4	
10	итого	102	10/6

Обшая химия. 11 класс

TEMA 1 Строение атома. Периодический закон и периодическая система химических элементов Д.И.Менделеева 10ч).

Строение атома. Сложное строение атома. Доказательства этого: катодные и рентгеновские лучи, фотоэффект, радиоактивность. Открытие элементарных частиц: электрона и нуклонов (протонов и нейтронов). Модели Томсона, Резерфорда, Бора. Постулаты Бора. Строение атома в свете квантово-механических представлений.

Нуклоны (протоны и нейтроны), нуклиды. Понятие об изобарах и изотопах. Ядерные реакции и их уравнения.

Корпускулярно-волновой дуализм электрона. Понятие электронной орбитали и электронного облака. s-, p-, d- и f-орбитали. Квантовые числа. Строение электронной оболочки атома.

Порядок заполнения электронами атомных орбиталей в соответствии с принципом минимума энергии, запретом Паули, правилом Хунда, правилом Клечковского. Электронные формулы атомов и ионов.

Периодический закон Д. И. Менделеева. Предпосылки открытия: работы предшественников, решения международного съезда химиков в г. Карлсруэ, личностные качества Д. И. Менделеева. Открытие периодического закона. Менделеевская формулировка периодического закона. Взаимосвязь периодического закона и теории строения атома. Современная формулировка периодического закона.

Взаимосвязь периодического закона и периодической системы. Периодическая система и строение атома. Физический смысл символики периодической системы.

Изменение свойств элементов в периодах и группах, как функция строения их атомов. Понятие об энергии ионизации и сродства к электрону.

Периодичность их изменения металлических и неметаллических свойств элементов в группах и периодах, как функция строения электронных оболочек атомов.

Значение периодического закона и периодической системы.

Демонстрации. Фотоэффект. Катодные лучи (электронно-лучевые трубки). Портреты Томсона, Резерфорда, Бора. Портреты Иваненко и Гапона; Берцелиуса, Деберейнера, Ньюлендса, Менделеева. Модели орбиталей различной формы. Спектры поглощения и испускания соединений химических элементов (с помощью спектроскопа). Различные варианты таблиц периодической системы химических элементов Д. И. Менделеева. Образцы простых веществ, оксидов и гидроксидов элементов третьего периода и демонстрация их свойств.

ТЕМА 2. ХИМИЧЕСКАЯ СВЯЗЬ И СТРОЕНИЕ ВЕЩЕСТВА (10ч)

Химическая связь. Понятие о химической связи. Основные характеристики химической связи: энергия, длина, дипольный момент.

Ионная химическая связь и ионные кристаллические решётки. Зависимость физических свойств веществ от типа кристаллической решетки.

Возбуждённое состояние атома. Понятие о ковалентной связи. Обменный механизм образования ковалентной связи. Электроотрицательность. Направленность ковалентной связи, её кратность. σ - и π - связи. Донорно-акцепторный механизм образования ковалентной связи. Типы кристаллических решёток с ковалентной связью: атомная и молекулярная.

Зависимость физических свойств веществ от типа кристаллической решетки.

Природа химической связи в металлах и сплавах. Общие физические свойства металлов: тепло- и электропроводность, пластичность, металлический блеск, магнитные свойства.

Металлическая кристаллическая решётка и её особенности, как функция металлической связи.

Комплексные соединения. Комплексообразование и комплексные соединения. Строение комплексных соединений: комплексообразователь и координационное число, лиганды, внутренняя и внешняя сферы.

Классификация комплексов: хелаты, катионные, анионные и нейтральные, аквакомплексы, аммиакаты, карбонилы металлов. Номенклатура комплексных соединений и их свойства. Диссоциация комплексных соединений. Значение комплексных соединений и их роль в природе. Агрегатные состояния веществ и фазовые переходы. Газы и газовые законы (Бойля-Мариотта, Шарля, Гей-Люссака). Уравнение Мендлеева-Клапейрона для идеального газа. Жидкости. Текучесть, испарение, кристаллизация.

Твёрдые вещества. Плавление. Фазовые переходы. Сублимация и десублимация. Жидкие кристаллы. Плазма

Межмолекулярные взаимодействия. Водородная связь и её разновидности: межмолекулярная и внутримолекулярная. Физические свойства веществ с водородной связью. Её биологическая роль в организации структур белков и нуклеиновых кислот. Вандерваальсово взаимодействие и его типы: ориентационное, индукционное и дисперсионное.

Демонстрации. Коллекция кристаллических веществ ионного строения, аморфных веществ и изделий из них. Модели кристаллических решёток с ионной связью. Модели молекул различной архитектуры. Модели кристаллических веществ атомной и молекулярной структуры. Коллекция веществ атомного и молекулярного строения и изделий из них. Портрет Вернера. Получение комплексных органических и неорганических соединений. Демонстрация сухих кристаллогидратов. Модели кристаллических решёток металлов. Вода в различных агрегатных состояниях и её фазовые переходы. Возгонка иода или бензойной кислоты. Диаграмма «Фазовые переходы веществ». Модели молекул ДНК и белка.

Лабораторные опыты. Взаимодействие многоатомных спиртов и глюкозы с фелинговой жидкостью. Качественные реакции на ионы Fe2+ и Fe3+.

Практическая работа 1. Получение комплексных органических и неорганических соединений и исследование их свойств.

ТЕМА 3. ДИСПЕРСНЫЕ СИСТЕМЫ И РАСТВОРЫ (9 ч)

Дисперсные системы. Химические вещества и смеси. Химическая система. Гомогенные и гетерогенные смеси. Дисперсная система: дисперсионная среда и дисперсная фаза. Классификация дисперсных систем.

Аэрозоли. Пропелленты. Эмульсии и эмульгаторы. Суспензии. Седиментация.

Коллоидные растворы. Эффект Тиндаля. Получение коллоидных растворов дисперсионным, конденсационным и химическим способами. Золи и коагуляция. Гели и синерезис. Значение коллоилных систем.

Растворы. Растворы как гомогенные системы и их типы: молекулярные, молекулярно-ионные, ионные. Способы выражения концентрации растворов: объёмная, массовая и мольная доли растворённого вещества. Молярная концентрация растворов.

Демонстрации. Образцы дисперсных систем и их характерные признаки. Образцы (коллекции) бытовых и промышленных аэрозолей, эмульсий и суспензий. Прохождение луча света через коллоидные и истинные растворы (эффект Тиндаля). Зависимость растворимости в воде твёрдых, жидких и газообразных веществ от температуры. Получение пересыщенного раствора тиосульфата натрия и его мгновенная кристаллизация.

Лабораторные опыты. Знакомство с коллекциями пищевых, медицинских и биологических гелей и золей. Получение коллоидного раствора хлорида железа(III).

Практическая работа 2. Растворимость веществ в воде и факторы её зависимости от различных факторов.

Практическая работа 3. Очистка воды фильтрованием, дистилляцией и перекристаллизацией.

Практическая работа 4. Приготовление растворов различной концентрации.

Практическая работа 5. Определение концентрации кислоты титрованием.

ТЕМА 4. ЗАКОНОМЕРНОСТИ ПРОТЕКАНИЯ ХИМИЧЕСКИХ РЕАКЦИЙ И ФИЗИКО-ХИМИЧЕСКИХ ПРОЦЕСОВ (9 ч)

Основы химической термодинамики. Химическая термодинамика. Термодинамическая система. Открытая, закрытая, изолированная системы. Внутренняя энергия системы. Энтальпия, или теплосодержание системы. Первое начало термодинамики. Изохорный и изобарный процессы. Термохимическое уравнение.

Энтальпия. Стандартная энтальпия. Расчёт энтальпии реакции. Закон Гесса и следствия из него. Энтропия. Второе и третье начала термодинамики. Свободная энергия Гиббса.

Скорость химических реакций. Понятие о скорости реакции. Энергия активации и активированный комплекс. Закон действующих масс. Кинетическое уравнение и константа скорости химической реакции. Порядок реакции.

Факторы, влияющие на скорость гомогенной реакции: природа и концентрация реагирующих веществ, температура. Температурный коэффициент. Уравнение С. Аррениуса.

Факторы, влияющие на скорость гетерогенной реакции: концентрация реагирующих веществ и площадь их соприкосновения

Основные понятия каталитической химии: катализаторы и катализ, гомогенный и гетерогенный катализ, промоторы, каталитические яды и ингибиторы. Механизм действия катализаторов.

Основные типы катализа: кислотно-основной, окислительно-восстановительный, металлокомплексный и катализ металлами, ферментативный. Ферменты, как биологические катализаторы белковой природы.

Химическое равновесие. Понятие об обратимых химических процессах. Химическое равновесие и константа равновесия. Смещение химического равновесия изменением концентрации веществ, изменением давления и температуры.

Демонстрации. Экзотермические процессы на примере растворения серной кислоты в воде. Эндотермические процессы на примере растворения солей аммония. Изучение зависимости скорости химической реакции от концентрации веществ, температуры (взаимодействие тиосульфата натрия с серной кислотой), поверхности соприкосновения веществ (взаимодействие соляной кислоты с гранулами и порошками алюминия или цинка). Проведение каталитических реакций разложения пероксида водорода, горения сахара, взаимодействия иода и алюминия. Коррозия железа в водной среде с уротропином и без него. Лабораторный опыт. Знакомство с коллекцией СМС

Практическая работа 6. Изучение влияния различных факторов на скорость химической реакции. ТЕМА 5. ХИМИЧЕСКИЕ РЕАКЦИИ В ВОДНЫХ РАСТВОРАХ (12ч)

Свойства растворов электролитов. Вода — слабый электролит. Катион гидроксония. Ионное произведение воды. Нейтральная, кислотная и щелочная среды. Понятие рН. Водородный показатель. Индикаторы. Роль рН среды в природе и жизни человека. Ионные реакции и условия их протекания.

Ранние представления о кислотах и основаниях. Кислоты и основания с позиции теории электролитической диссоциации. Теория кислот и оснований Бренстеда—Лоури. Сопряжённые кислоты и основания. Амфолиты.

Классификация кислот и способы их получения. Общие химические свойства органических и неорганических кислот: реакции с металлами, с оксидами и гидроксидами металлов, с солями, со спиртами. Окислительные свойства концентрированной серной и азотной кислот.

Классификация оснований и способы их получения. Общие химические свойства щелочей: реакции с кислотами, кислотными и амотерными оксидами, солями, некоторыми металлами и неметаллами, с органическими веществами (галоидопроизводными углеводородов, фенолом, жирами). Химические свойства нерастворимых оснований: реакции с кислотами, реакции

разложения и комплексообразования. Химические свойства бескислородных оснований (аммиака и аминов): взаимодействие с водой и кислотами.

Классификация солей органический и неорганических кислот. Основные способы получения солей. Химические свойства солей: разложение при нагревании, взаимодействие с кислотами и щелочами, другими солями. Жёсткость воды и способы её устранения.

Гидролиз. Понятие гидролиза. Гидролиз солей и его классификация: обратимый и необратимый, по аниону и по катиону, ступенчатый. Усиление и подавление обратимого гидролиза. Необратимый гидролиз бинарных соединений.

Демонстрации. Сравнение электропроводности растворов электролитов. Смещение равновесия диссоциации слабых кислот. Индикаторы и изменение их окраски в разных средах. Взаимодействие концентрированных азотной и серной кислот, а также разбавленной азотной кислоты с медью. Реакция «серебряного зеркала» для муравьиной кислоты. Взаимодействие аммиака и метиламина с хлороводородом и водой. Получение и свойства раствора гидроксида натрия. Получение мыла и изучение среды его раствора индикаторами. Гидролиз карбонатов, сульфатов и силикатов щелочных металлов, нитрата свинца(II) или цинка, хлорида аммония.

Лабораторные опыты. Реакции, идущие с образованием осадка, газа или воды, для органических и неорганических электролитов. Свойства соляной, разбавленной серной и уксусной кислот. Взаимодействие гидроксида натрия с солями: сульфатом меди(II) и хлоридом аммония. Получение и свойства гидроксида меди(II). Свойства растворов солей сульфата меди и хлорида железа(III). Исследование среды растворов с помощью индикаторной бумаги.

Практическая работа 7. Исследование свойств минеральных и органических кислот.

Практическая работа 8. Получение солей различными способами и исследование их свойств.

Практическая работа 9. Гидролиз органических и неорганических соединений.

ТЕМА 6. ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ ПРОЦЕССЫ (9ч)

Окислительно-восстановительные реакции. Понятие об окислительно-восстановительных реакциях. Степень окисления. Процессы окисления и восстановления. Важнейшие окислители и восстановители. Метод электронного баланса для составления уравнений окислительно-восстановительных реакций. Методы ионно-электронного баланса (метод полуреакций). Окислительно-восстановительные потенциалы.

Электролиз. Понятие электролиза как окислительно-восстановительного процесса, протекающего на электродах. Электролиз расплавов электролитов.

Электролиз растворов электролитов с инертными электродами. Электролиз растворов электролитов с и активным анодом. Практическое значение электролиза: электрохимическое получение веществ, электрохимическая очистка (рафинирование) металлов, гальванотехника, гальванопластика, гальванизация.

Химические источники тока. Гальванические элементы. Стандартный водородный электрод. Стандартные электродные потенциалы. Современные химические источники тока: батарейки и аккумуляторы.

Коррозия металлов и способы защиты от неё. Понятие о коррозии. Виды коррозии по характеру окислительно-восстановительных процессов: химическая и электрохимическая. Способы защиты металлов от коррозии: применение легированных сплавов, нанесение защитных покрытий, изменение состава или свойств коррозионной среды, электрохимические методы защиты.

Демонстрации. Восстановление оксида меди(II) углем и водородом. Восстановление дихромата калия этиловым спиртом. Окислительные свойства дихромата калия. Окисление альдегида в карбоновую кислоту (реакция «серебряного зеркала» или реакция с гидроксидом меди(II). Электролиз раствора сульфата меди(II). Составление гальванических элементов. Коррозия металлов в различных условиях и методы защиты от неё.

Лабораторные опыты. Взаимодействие металлов с неметаллами, а также с растворами солей и кислот. Взаимодействие концентрированных серной и азотной кислот с медью. Окислительные свойства перманганата калия в различных средах. Ознакомление с коллекцией химических источников тока (батарейки, свинцовые аккумуляторы и т. д.).

ТЕМА 7. НЕМЕТАЛЛЫ (23 ч)

Водород. Двойственное положение водорода в периодической системе химических элементов: в I-A и VII-A группах. Изотопы водорода.

Нахождение в природе. Строение молекулы, физические свойства. Химические свойства водорода: восстановительные (с более электроотрицательными неметаллами, с оксидами металлов, гидрирование органических веществ) и окислительные (с металлами І-А и ІІ-А групп). Получение водорода: в лаборатории (взаимодействием кислот с металлами) и промышленности (конверсией). Применение водорода.

Галогены. Элементы VIIA-группы — галогены: строение атомов и молекул, галогены-простые вещества, соединения: сравнительная характеристика.

Галогены в природе. Закономерности изменения физических и химических свойств в VIIA-группе: взаимодействие галогенов с металлами, неметаллами, со сложными неорганическими и органическими веществами. Получение и применение галогенов.

Строение молекул и физические свойства галогеноводородов. Химические свойства галогеноводородных кислот: кислотные свойства, восстановительные свойства, взаимодействие с органическими веществами. Получение галогеноводородов. Галогениды. Качественные реакции на галогенид-ионы.

Оксиды хлора. Кислородсодержащие кислоты хлора. Соли кислородсодержащих кислот хлора. Получение и применение важнейших кислородных соединений хлора.

Кислород. Общая характеристика элементов VIA-группы.

Кислород: нахождение в природе, получение (лабораторные и промышленные способы) и физические свойства.

Химические свойства кислорода: окислительные (с простыми веществами, с низшими оксидами, с органическими и неорганическими веществами) и восстановительные (с фтором). Области применения.

Озон. Нахождение в природе. Физические и химические свойства озона. Его получение и применение. Роль озона в живой природе.

Строение молекулы пероксида водорода, его физические и химические свойства (окислительные и восстановительные). Получение и применение пероксида водорода.

Сера. Нахождение серы в природе. Валентные возможности атомов серы. Аллотропия серы. Физические свойства ромбической серы. Химические свойства серы: окислительные (с металлами, с водородом и с менее электроотрицательными неметаллами) и восстановительные (с кислородом, кислотами-окислителями), реакции диспропорционирования (со щелочами). Получение серы и области применения.

Строение молекулы и свойства сероводорода: физические, физиологические и химические. Сероводород, как восстановитель, его получение и применение. Сульфиды и их химические свойства. Распознавание сульфид-ионов.

Сернистый газ, его физические свойства, получение и применение. Химические свойства оксида серы(IV): восстановительные (с кислородом, бромной водой, перманганатом калия и сероводородом) и свойства кислотных оксидов со щелочами. Сернистая кислота и её соли.

Серный ангидрид, его физические свойства, получение и применение. Химические свойства оксида серы(VI), как окислителя и типичного кислотного оксида. Серная кислота: строение и физические свойства. Химические свойства разбавленной серной кислоты: окислительные и обменные и окислительные свойства концентрированной. Получение серной кислоты в промышленности. Области применения серной кислоты. Сульфаты, в том числе и купоросы. Гидросульфаты. Физические и химические свойства солей серной кислоты. Распознавание сульфат-анионов.

Азот. Общая характеристика элементов VA-группы. Азот. Строение атома. Нахождение в природе. Физические свойства. Окислительные и восстановительные свойства. Получение и применение азота.

Строение молекулы аммиака, его физические свойства. Образование межмолекулярной водородной связи. Химические свойства аммиака как восстановителя. Основные свойства аммиака как электонодонора. Комплексообразование с участием аммиака. Взаимодействие аммиака с органическими веществами и с углекислым газом. Получение и применение аммиака. Соли аммония: строение молекул, физические и химические свойства, применение.

Солеобразующие (N2O3, NO2, N2O5) и несолеобразующие (N2O, NO) оксиды. Их строение, физические и химические свойства.

Азотистая кислота и её окислительно-восстановительная двойственность. Соли азотистой кислоты — нитриты. Строение молекулы и физические свойства азотной кислоты. Её химические свойства: кислотные и окислительные в реакциях с металлами и неметаллами, реакции со органическими и неорганическими соединениями. Получение азотной кислоты в промышленности и лаборатории и её применение. Нитраты (в том числе и селитры), их физические и химические свойства. Термическое разложение нитратов. Применение нитратов. Фосфор. Строение атома и аллотропия фосфора. Физические свойства аллотропных

Фосфор. Строение атома и аллотропия фосфора. Физические свойства аллотропных модификаций и их взаимопереходы. Химические свойства фосфора: окислительные (с металлами), восстановительные (с более электроотрицательными неметаллами, кислотамиокислителями, бертолетовой солью) и диспропорционирования (со щелочами). Нахождение в природе и его получение. Фосфин, его строение и свойства.

Оксиды фосфора(III) и (V). Фосфорные кислоты, их физические и химические свойства. Получение и применение ортофосфорной кислоты. Соли ортофосфорной кислоты и их применение.

Углерод. Углерод — элемент IVA-группы. Аллотропные модификации углерода, их получение и свойства. Сравнение свойств алмаза и графита.

Химические свойства углерода: восстановительные (с галогенами, кислородом, серой, азотом, водой, оксидом меди(II), кислотами-окислителями) и окислительные (с металлами, водородом и менее электроотрицательными неметаллами). Углерод в природе.

Оксид углерода(II): строение молекулы, свойства, получение и применение.

Оксид углерода(IV): строение молекулы, свойства, получение и применение.

Угольная кислота и её соли: карбонаты и гидрокарбонаты, — их представители и применение.

Кремний. Кремний в природе. Получение и применение кремния. Физические и химические свойства кристаллического кремния: восстановительные (с галогенами, кислородом, растворами щелочей и плавиковой кислоты) и окислительные (с металлами). Оксид кремния(IV), его свойства. Кремниевая кислота и её соли. Силикатная промышленность.

Демонстрации. Получение водорода и его свойства. Коллекция «Галогены — простые вещества». Получение хлора взаимодействием перманганата калия с соляной кислотой. Получение соляной кислоты и её свойства. Окислительные свойства хлорной воды. Отбеливающее действие жавелевой воды. Горение спички. Взрыв петарды или пистонов. Получение кислорода разложением перманганата калия и нитрата натрия. Получение оксидов из простых и сложных веществ. Окисление аммиака с помощью индикатора и без него. Разложение пероксида водорода, его окислительные свойства в реакции с гидроксидом железа(II) и восстановительные свойства с кислым раствором перманганата калия. Горение серы. Взаимодействие серы с металлами:

алюминием, цинком, железом. Получение сероводорода и сероводородной Доказательство наличия сульфид-иона в растворе. Качественные реакции на сульфит-анионы. Свойства серной кислоты. Качественные реакции на сульфит- и сульфат-анионы. Схема промышленной установки фракционной перегонки воздуха. Получение и разложение хлорида аммония. Качественная реакция на ион аммония. Получение оксида азота(IV) реакцией взаимодействия меди с концентрированной азотной кислотой. Взаимодействие оксида азота(IV) с водой. Разложение нитрата натрия, горение чёрного пороха. Горение фосфора, растворение оксида фосфора(V) в воде. Качественная реакция на фосфат-анион. Коллекция минеральных удобрений. Коллекция природных соединений углерода. Кристаллические решётки алмаза и графита. Адсорбция оксида азота(IV) активированным углем. Восстановление оксида меди(II) углем. Ознакомление с коллекцией природных силикатов и продукцией силикатной промышленности. Получение кремниевой кислоты взаимодействием раствора силиката натрия с сильной кислотой, растворение кремниевой кислоты в щёлочи, разложение при нагревании.

Лабораторные опыты. Качественные реакции на галогенид-ионы. Ознакомление с коллекцией природных соединений серы. Качественная реакция на сульфат-анион. Получение углекислого газа, взаимодействие мрамора с соляной кислотой и исследование его свойств. Качественная реакция на карбонат-анион.

Практическая работа 10. Получение оксидов неметаллов и исследование их свойств.

Практическая работа 11. Получение газов и исследование их свойств.

ТЕМА 8. МЕТАЛЛЫ (16 ч)

Щелочные металлы. Положение щелочных металлов в периодической системе элементов Д. И. Менделеева и строение их атомов. Закономерности изменения физических и химических свойств в зависимости от атомного номера металла (изменение плотности, температур плавления и кипения, реакций с водой). Единичное, особенное и общее в реакциях с кислородом, другими неметаллами, жидким аммиаком, органическими и неорганическими кислотами и др. соединениями. Нахождение в природе, их получение и применение.

Оксиды, их получение и свойства. Щёлочи, их свойства и применение.

Соли щелочных металлов, их представители и значение.

Металлы ІБ-группы: медь и серебро. Строение атомов меди и серебра.

Физические и химические свойства этих металлов, их получение и применение. Медь и серебро в природе.

Свойства и применение важнейших соединений: оксидов меди(I) и (II), серебра(I); солей меди(II) (хлорида и сульфата) и серебра (фторида, нитрата, хромата и ацетата).

Бериллий, магний и щёлочноземельные металлы. Положение в периодической системе элементов Д. И. Менделеева и строения атомов металлов IIA-группы. Нахождение в природе,

получение, физические и химические свойства, применение щёлочноземельных металлов и их важнейших соединений (оксидов, гидроксидов и солей).

Временная и постоянная жёсткость воды и способы устранения каждого из типов. Иониты.

Цинк. Положение в периодической системе элементов Д. И. Менделеева и строения атомов цинка. Его физические и химические свойства. Нахождение в природе, получение и применение цинка.

Оксид, гидроксид и соли цинка: их свойства и применение.

Алюминий. Положение в периодической системе элементов Д. И. Менделеева и строения атомов алюминия. Его физические и химические свойства. Нахождение в природе, получение и применение алюминия.

Оксид, гидроксид и соли алюминия (в которых алюминий находится в виде катиона и алюминаты): их свойства и применение. Органические соединения алюминия.

Хром. Положение в периодической системе элементов Д. И. Менделеева и строения атомов хрома. Его физические и химические свойства. Нахождение в природе, получение и применение хрома.

Свойства, получение и применение важнейших соединения хрома: оксидов и гидроксидов хрома, дихроматов и хроматов щелочных металлов.

Зависимость кислотно-основных свойств оксидов и гидроксидов хрома от степени его окисления. Хроматы и дихроматы, их взаимопереходы и окислительные свойства.

Марганец. Положение в периодической системе элементов Д. И. Менделеева и строения атомов марганца. Его физические и химические свойства. Нахождение в природе, получение и применение марганца.

Получение, свойства и применение важнейших соединений марганца: оксидов и гидроксидов, солей марганца в различной степени окисления. Соли марганца(VII), зависимость их окислительных свойств от среды раствора.

Железо. Положение в периодической системе элементов Д. И. Менделеева и строения атомов железа. Его физические и химические свойства. Нахождение в природе, получение (чугуна и стали) и применение железа. Получение, свойства и применение важнейших соединений железа(II) и (III): оксидов, гидроксидов, солей. Комплексные соединения железа.

Демонстрации. Образцы щелочных металлов. Взаимодействие щелочных металлов с водой. Реакция окрашивания пламени солями щелочных металлов. Образцы металлов IIA-группы. Взаимодействие кальция с водой. Горение магния в воде и твёрдом углекислом газе. Качественные реакции на катионы магния, кальция, бария. Реакции окрашивания пламени солями металлов IIA-группы. Получение жёсткой воды и устранение жёсткости. Получение и исследование свойств гидроксида хрома(III). Окислительные свойства дихромата калия.

Окислительные свойства перманганата калия. Лабораторные опыты. Качественные реакции на катионы меди и серебра

Получение и исследование свойств гидроксида цинка. Взаимодействие алюминия с растворами кислот и щелочей. Получение и изучение свойств гидроксида алюминия. Коллекция железосодержащих руд, чугуна и стали. Получение нерастворимых гидроксидов железа и изучение их свойств. Получение комплексных соединений железа.

Практическая работа 12. Решение экспериментальных задач по теме «Получение соединений металлов и исследование их свойств».

Практическая работа 13. Решение экспериментальных задач по темам: «Металлы» и «Неметаллы».

Да	та	№	Тема урока.	Характеристика деятельности
		урока	Практическая часть	учащихся
			-	дела (количество часов)
План	Факт	TEMA 1.	СТРОЕНИЕ АТОМА. ПЕРИОДИЧЕСКИЙ ЗАКОН И П	ЕРИОДИЧЕСКАЯ СИСТЕМА ХИМИЧЕСКИХ ЭЛЕМЕНТОВ Д. И. МЕНДЕЛЕЕВА—10 ч.
		1/1	Строение атома	Аргументировать сложное строение атома и состоятельность различных моделей, отражающих это строение. Формулировать постулаты Бора. Характеризовать корпускулярно-волновой дуализм частиц микромира
		2/2	Строение атомного ядра	Характеризовать состав атомного ядра. Различать нуклоны и нуклиды, изобары и изотопы
		3/3	Строение атомного ядра. Изотопы. Ядерные реакции	Характеризовать состав атомного ядра. Различать нуклоны и нуклиды, изобары и изотопы Формулировать современное определение понятия «химический элемент». Записывать уравнения ядерных реакций
		4/4	Состояние электронов в атоме.	Описывать состояние электрона в атоме. Различать понятия «орбиталь» и «электронное облако». Классифицировать орбитали и описывать их. Устанавливать взаимосвязи между квантовыми числами и строением электронной оболочки атома. Осуществлять внутрипредметные связи с курсом основной школы и курсом органической химии
		5/5	Электронные конфигурации атомов	Описывать строение электронных оболочек атомов. Записывать электронные и электронно-графические формулы атомов химических элементов.
		6/6	Строение атома и периодический закон Д. И. Менделеева	Описывать предпосылки открытия периодического закона. Аргументировать роль личности Д. И. Менделеева в открытии периодического закона. Формулировать периодический закон в соответствии с воззрениями Д. И. Менделеева и современными представлениями
		7/7	Строение атома и периодическая система Д. И. Менделеева.	Раскрывать физический смысл порядкового номера элемента, номера периода и группы. Объяснять периодическое изменение свойств химических элементов особенностями строения их атомов

8/8	Положения элемента в периодической системе и его свойства. Значение периодического закона	Устанавливать периодичность изменения радиусов атомов, электроотрицательности элементов, их энергии ионизации и энергии сродства к электрону в зависимости от положения элементов в периодической системе. Описывать свойства элементов и образованных ими веществ на основании их положения в периодической системе. Характеризовать значение периодического закона и периодической системы
9\9	Обобщение и систематизация знаний по теме «Строение атома. Периодический закон и периодическая система химических элементов Д. И. Менделеева»	Выполнять тесты и упражнения, решать задачи и упражнения по теме. Проводить оценку собственных достижений в усвоении темы. Корректировать свои знания в соответствии с планируемым результатом
10\10	Контрольная работа 1 по теме «Строение атома. Периодический закон и периодическая система химических элементов Д. И. Менделеева»	
. TEMA	А 2. ХИМИЧЕСКАЯ СВЯЗЬ И СТРОЕНИ	Е ВЕЩЕСТВА—10 ч.
11/1	Химическая связь. Ионная химическая связь	Аргументировать образование химической связи как результата взаимодействия атомов, приводящее к образованию ионов, молекул и радикалов. Давать основные характеристики химической связи. Раскрывать механизм образования ионной химической связи. Устанавливать зависимость физических свойств веществ от типа кристаллической решетки
12/2	Ковалентная химическая связь и механизмы её образования	Описывать ковалентную связь. Характеризовать её особенности и механизмы образования. Классифицировать ковалентную связь по электроотрицательности, кратности и способу перекрывания орбиталей. Устанавливать зависимость физических свойств веществ от типа кристаллической решетки
13/3	Комплексные соединения	Характеризовать комплексные соединения и их строение на основе теории Вернера
14/4	Классификация и номенклатура комплексных соединений, диссоциация их в растворах. Значение комплексных соединений	Классифицировать комплексные соединения Называть эти соединения в соответствии с правилами номенклатуры IUPAC. Записывать уравнения реакций диссоциации комплексных соединений. Раскрывать роль комплексных соединений в химическом анализе,

		промышленности, природе
15/5	Металлическая химическая связь	Описывать металлическую химическую связь.
		Характеризовать общие физические свойства металлов.
		Устанавливать зависимость между видом химической связи, типом
		кристаллической решётки и свойствами металлов
16/6	Агрегатные состояния веществ и фазовые	Характеризовать агрегатные состояния веществ как функцию условий их
	переходы	нахождения в окружающей среде.
		Описывать взаимосвязь фазовых переходов веществ.
		Раскрывать роль фазовых переходов веществ в природе и искусственной среде
17/7	Межмолекулярные взаимодействия.	Описывать водородную связь и различать её разновидности.
	Водородная связь	Характеризовать значение водородных связей для описания физических
		свойств веществ и организации структуры биополимеров.
		Различать типы межмолекулярного взаимодействия веществ.
18\8	Практическая работа 1 Получение	Соблюдать правила техники безопасности при работе с лабораторным
	комплексных органических и	оборудованием, нагревательными приборами, химическими реактивами.
	неорганических соединений и	Экономно и экологически грамотно обращаться с ними.
	исследование их свойств	Исследовать свойства комплексных соединений.
		Наблюдать химические явления и фиксировать результаты наблюдений.
		Формулировать выводы на их основе
19\9	Обобщение и систематизация знаний по	Выполнять тесты и упражнения, решать задачи по теме.
	теме «Химическая связь и строение	Проводить оценку собственных достижений в усвоении темы.
	вещества»	Корректировать свои знания в соответствии с планируемым результатом
20\10	Контрольная работа 2 по теме	
	«Химическая связь и строение	
	вещества»	
TEMA	3. ДИСПЕРСНЫЕ СИСТЕМЫ И РАСТВО	ОРЫ—9 ч.
21/1	Дисперсные системы и их классификация	Описывать химические системы и дисперсные в частности.
		Различать гомогенные и гетерогенные смеси, дисперсионную среду и
		дисперсную фазу.
		Классифицировать дисперсные системы
22/2	Грубодисперсные системы	Характеризовать грубодисперсные системы.
		Описывать роль аэрозолей, эмульсий и суспензий в природе, на производстве
		и в быту
23/3	Тонкодисперсные системы	Описывать тонкодисперсные системы и способы их получения.
		Различать золи и гели.

		Характеризовать коагуляцию и синерезис. Раскрывать роль коллоидных систем в природе, на производстве, в медицине и быту.
24/4	Растворы. Концентрация растворов и способы её выражения	Характеризовать раствор как гомогенную систему. Использовать количественные характеристики содержания растворённого вещества в растворе при решении расчётных задач
25/5	Концентрация растворов и способы её выражения	Характеризовать раствор как гомогенную систему. Использовать количественные характеристики содержания растворённого вещества в растворе при решении расчётных задач
26/6	Практическая работа 2 Приготовление растворов различной концентрации	Соблюдать правила техники безопасности при работе с лабораторным оборудованием, нагревательными приборами, химическими реактивами.
27/7	Практическая работа 3 Определение концентрации кислоты титрованием	Экономно и экологически грамотно обращаться с ними. Наблюдать химические явления и фиксировать результаты наблюдений. Формулировать выводы на их основе
28\8	Обобщение и систематизация знаний по теме «Дисперсные системы и растворы»	Выполнять тесты и упражнения, решать задачи по теме. Проводить оценку собственных достижений в усвоении темы. Корректировать свои знания в соответствии с планируемым результатом
29\9	Контрольная работа 3 по теме «Дисперсные системы и растворы»	
TEMA 4.	ЗАКОНОМЕРНОСТИ ПРОТЕКАНИЯ ХИМИЧЕСКИХ	РЕАКЦИЙ И ФИЗИКО-ХИМИЧЕСКИХ ПРОЦЕССОВ—9 ч.
30/1	Основы химической термодинамики. Понятие об энтальпии	Характеризовать термодинамическую систему. Различать открытую, закрытую, изолированную термодинамические системы. Использовать понятие энтальпии для характеристики теплосодержания системы. Формулировать первое начало термодинамики. Описывать изохорный и изобарный процессы
31/2	Определение тепловых эффектов химических реакций Закон Гесса	Различать химические реакции по тепловому эффекту. Характеризовать энтальпию. закон Гесса и следствия из него. Производить расчёт энтальпии реакции
32/3	Направление протекания химических реакций. Понятие об энтропии	Характеризовать энтропию. Формулировать второе и третье начала термодинамики. Аргументировать возможность самопроизвольного протекания химических реакций и подтверждать их расчётами
33\4	Скорость химических реакций	Характеризовать скорость химической реакции и предлагать единицы её измерения. Формулировать закон действующих масс и определять границы его применимости
34/5	Факторы, влияющие на скорость	Различать гомо- и гетерогенные процессы и факторы, влияющие на скорость

	гомогенных и гетерогенных реакции	их протекания. Формулировать правило Вант-Гоффа и определять границы его применимости. Характеризовать особенности кинетики гетерогенных химических реакций
35\6	Катализ и катализаторы	Характеризовать катализ и катализаторы как факторы управления скоростью
36/7	Химическое равновесие	химической реакции. Описывать механизмы гомо-, гетерогенного и ферментативного катализов. Проводить, наблюдать, описывать химический эксперимент и делать выводы на его основе Описывать химическое равновесие, как динамическое состояние химической системы. Формулировать принцип Ле Шателье и предлагать
		способы смещения равновесия обратимых химических реакций на его основе.
37\8	Практическая работа 4 Изучение влияния различных факторов на скорость химической реакции	Соблюдать правила техники безопасности при работе с лабораторным оборудованием, нагревательными приборами, химическими реактивами. Экономно и экологически грамотно обращаться с ними. Наблюдать химические явления и фиксировать результаты наблюдений. Формулировать выводы на их основе
38\9	Обобщение и систематизация знаний по теме, решение задач.	Выполнять тесты и упражнения, решать задачи по теме. Проводить оценку собственных достижений в усвоении темы. Корректировать свои знания в соответствии с планируемым результатом
TEMA 5.	ХИМИЧЕСКИЕ РЕАКЦИИ В ВОДНЫХ РАСТВО	OPAX—12 ч.
39/1	Вода как слабый электролит. Водородный показатель. Свойства растворов электролитов	Характеризовать воду как слабый электролит и водородный показатель, как количественную характеристику её диссоциации и среды раствора. Раскрывать сущность реакций в растворах электролитов как результат взаимодействия ионов. Отражать это с помощью ионных уравнений.
40/2	Кислоты и основания с позиции разных представлений и теорий. Протолитическая теория	Характеризовать кислоты, как соединения, различные по составу, типу образующихся при электролитической диссоциации ионов, а также с позиций протонной теории. Устанавливать сопряжённость кислот и оснований. Описывать амфолиты
41/3	Неорганические и органические кислоты в свете теории электролитической диссоциации и протолитической теории	Характеризовать классификацию органических и неорганических кислот, основные способы их получения и общие химические свойства в свете теории электролитической диссоциации и протолитической теории. Выделять особенности реакций серной и азотной кислот
42/4	Практическая работа 5 Исследование свойств минеральных и органических кислот	Соблюдать правила техники безопасности при работе с лабораторным оборудованием, нагревательными приборами, химическими реактивами. Экономно и экологически грамотно обращаться с ними. Наблюдать химические явления и фиксировать результаты наблюдений.

		Формулировать выводы на их основе
43/5	Неорганические и органические	Классифицировать органические и неорганические основания.
	основания в свете теории электро-	Характеризовать способы получения и свойства щелочей, нерастворимых и
	литической диссоциации	бескислородных оснований в свете теории электролитической диссоциации
	и протолитической теории	и протолитической теории
44/6	Соли в свете теории электролитической	Характеризовать классификацию солей органических и неорганических
	диссоциации	кислот, основные способы их получения и общие химические свойства солей
45/7	Практическая работа 6 Получение солей	в свете теории электролитической диссоциации.
	различными способами и исследование	Соблюдать правила техники безопасности при работе с лабораторным
	их свойств	оборудованием, нагревательными приборами, химическими реактивами.
		Экономно и экологически грамотно обращаться с ними.
		Наблюдать химические явления и фиксировать результаты наблюдений.
		Формулировать выводы на их основе
46/8	Гидролиз неорганических соединений	Описывать гидролиз как обменный процесс. Отражать его с помощью
		уравнений. Различать типы гидролиза.
45.00		Предсказывать реакцию среды водных растворов солей
47//9	Практическая работа 7 Гидролиз	Соблюдать правила техники безопасности при работе с лабораторным
	органических и неорганических	оборудованием, нагревательными приборами, химическими реактивами.
	соединений	Экономно и экологически грамотно обращаться с ними.
		Наблюдать химические явления и фиксировать результаты наблюдений.
48/10	Обобщение и систематизация знаний по	Формулировать выводы на их основе Выполнять тесты и упражнения, решать задачи по теме.
46/10	теме «Закономерности протекания	Проводить оценку собственных достижений в усвоении темы.
	химических реакций и физико-	Корректировать свои знания в соответствии с планируемым результатом
	химических реакции и физико- химических процессов» и	Коррсктировать свои знания в соответствии с планирусмым результатом
49/11	Обобщение и систематизация знаний по	
77/11	теме «Химические реакции в водных	
	растворах»	
50/12	Контрольная работа 4	
2 0/12	«Закономерности протекания химических	
	реакций и физико-химических	
	процессов» и «Химические реакции в	
	водных растворах»	
TEMA 6.	ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ ПРОІ	ЦЕССЫ —9 ч.
51/1	Окислительно-восстановительные	Описывать окислительно-восстановительные реакции. Отличать их от
		<u> </u>

52/2	уравнений Окислительно-восстановительные реакции и методы составления их	Записывать уравнения окислительно-восстановительных реакций с помощью методов электронного баланса и полуреакций.
		методов электронного баланса и полуреакций.
53/3	пеакини и метолы составления их	1 71
53/3	1	Характеризовать окислительно-восстановительные потенциалы
53/3	уравнений	
00,0	Электролиз	Описывать электролиз как окислительно-восстановительный процесс.
54/4	Электролиз	Объяснять катодные и анодные процессы с инертными и активными
		электродами.Записывать схемы и уравнения электролиза
		расплавов и растворов электролитов.
		Характеризовать практическое значение электролиза и его основные
		направления
55/5	Химические источники тока	Характеризовать гальванические элементы и другие химические источники
		тока. Описывать процессы на электродах в гальваническом элементе.
		Раскрывать роль химических источников тока для производственной и
		повседневной жизни человека
56\6	Коррозия металлов и способы защиты от	Характеризовать коррозию металлов как окислительно-восстановительный
	неё	процесс. Различать типы коррозии.
		Предлагать способы защиты металлов от коррозии.
		Устанавливать зависимость между коррозией металлов и условиями
		окружающей среды
57/7	Обобщение и систематизация знаний по	Выполнять тесты и упражнения, решать задачи по теме.
	теме «Окислительно-восстановительные	Проводить оценку собственных достижений в усвоении темы.
	процессы»	Корректировать свои знания в соответствии с планируемым результатом
58/8	Решение задач по теме	
59/9	Контрольная работа 5 по теме	
	«Окислительно-восстановительные	
	процессы»	
TEMA 7.	НЕМЕТАЛЛЫ—23 ч.	
60/1	Общая характеристика неметаллов,	Характеризовать положение неметаллов в периодической системе, знать их
00,1	положение с периодической системе	основные свойства
	химических элементов.	55
61/2	Водород	Аргументировать двойственное положение водорода в периодической системе
	, I -11	
		Сравнивать свойства водорода со щелочными металлами и галогенами.
61/2	Водород	химических элементов.

		Характеризовать изотопы водорода, нахождение в природе, строение молекулы, физические свойства, восстановительные и окислительные свойства. Описывать получение водорода в лаборатории и промышленности и его применение
62/3	Галогены	Характеризовать VIIA-группу галогенов в плане сравнения строения атомов и кристаллов, окислительно-восстановительных свойств.
		Выявлять закономерности изменения свойств галогенов в группе. Описывать способы получения и области применения галогенов и их соединений.
63/4	Галогеноводороды и галогеноводородные кислоты. Галогениды	Характеризовать строение молекул, свойства галогеноводородных кислот и способы получения.
		Устанавливать зависимость кислотных свойств этих соединений от величины степени окисления и радиуса атома галогена. Идентифицировать галогенидионы. Проводить, наблюдать и описывать химический эксперимент
64/5	Кислородные соединения хлора	Характеризовать оксиды, кислородсодержащие кислоты хлора и их соли: свойства, получение и применение.
65\6	Кислород и озон	Давать общую характеристику халькогенов. Сравнивать строение атомов и
66/7	Пероксид водорода	кристаллов, окислительно-восстановительные свойства халькогенов. Устанавливать закономерности изменения свойств халькогенов в группе. Характеризовать аллотропию кислорода, нахождение в природе, строение молекул кислорода и озона, физические свойства, восстановительные и окислительные свойства кислорода.
		Описывать получение кислорода и озона в лаборатории и промышленности и их применение. Наблюдать и описывать химический эксперимент Характеризовать строение молекулы пероксида водорода и его окислительновосстановительную двойственность. Описывать области применения и получение пероксида водорода
67/8	Cepa	Характеризовать строение атома и степени окисления серы как функцию его нормального и возбуждённого состояний. Описывать аллотропные модификации серы и их строение. Объяснять окислительно-восстановительные свойства серы и конкретизировать их химическими реакциями. Раскрывать нахождение серы в природе, её получение и применение
68/\9	Сероводород и сульфиды	Характеризовать строение молекулы сероводорода и прогнозировать восстановительные свойства. Подтверждать их уравнениями соответствующих реакций.

		Описывать получение и применение сероводорода и свойства сероводородной кислоты и сульфидов. Идентифицировать сульфид-ионы
69/10	Оксид серы (IV), сернистая кислота и её соли	Описывать свойства оксида серы(IV) и сернистой кислоты, их получение и применение. Характеризовать восстановительные свойства оксида серы(IV) и
70/11	Оксид серы(VI). Серная кислота и её соли	конкретизировать их уравнениями реакций. Описывать получение и применение диоксида серы, сернистой кислоты и сульфитов. Распознавать сульфит-ионы. Характеризовать оксид серы (VI) и серную кислоту как кислотные соединения. Прогнозировать окислительные свойства оксида серы(VI) и серной кислоты. Описывать получение и применение триоксида серы, серной кислоты и сульфатов. Идентифицировать сульфат-ионы.
71/12	Азот	Давать общую характеристику пниктогенов. Сравнивать строение атомов и кристаллов, окислительно-восстановительные свойства пниктогенов. Устанавливать закономерности изменения свойств пниктогенов в группе. Характеризовать нахождение азота в природе, строение молекулы, его физические свойства, восстановительные и окислительные свойства. Описывать получение азота в лаборатории и промышленности и его применение
72/13	Аммиак. Соли аммония	Характеризовать физические и химические свойства аммиака на основе состава и строения молекулы. Описывать лабораторный и промышленный способы получения аммиака. Распознавать катион аммония. Характеризовать физические и химические свойства солей аммония и их применение.
73/14	Оксиды азота. Азотистая кислота и нитриты	Классифицировать оксиды азота. Характеризовать строение молекул, физические и химические свойства оксидов азота. Описывать свойства азотистой кислоты и её солей. Конкретизировать окислительно-восстановительные свойства нитритов уравнениями реакций
74/15	Азотная кислота и нитраты	Характеризовать строение молекулы, физические и химические свойства азотной кислоты как кислоты и сильного окислителя, её получение и применение. Устанавливать зависимость между свойствами нитратов и их применением

75/16	Фосфор и его соединения	Характеризовать аллотропию фосфора, строение молекул модификаций, их физические свойства, восстановительные и окислительные свойства фосфора, нахождение в природе, получение и применение. Сравнивать свойства аллотропных модификаций.
		Устанавливать взаимосвязи между оксидами фосфора, фосфорными
		кислотами и фосфатами. Характеризовать их свойства и применение.
		Идентифицировать фосфат-анион.
76/17	V	Наблюдать и описывать химический эксперимент
76/17	Углерод и его соединения	Давать общую характеристику элементов IVA-группы. Сравнивать аллотропные модификации углерода по строению, свойствам и применению. Характеризовать окислительно-восстановительные свойства углерода. Описывать строение молекул, свойства, получение и применение
		угарного и углекислого газов. Характеризовать свойства карбонатов и гидрокарбонатов. Приводить примеры важнейших предстателей солей угольной кислоты и их значение.
77/18	Кремний и его соединения	Описывать восстановительные и окислительные свойства кремния, его
78/19	Практическая работа 8 Получение оксидов неметаллов и исследование их свойств	нахождение в природе, получение и области применения. Устанавливать взаимосвязи между оксидами кремния, кремниевыми кислотами и силикатами. Описывать продукцию силикатной промышленности.
79/20	Практическая работа 9 Получение газов и исследование их свойств	Соблюдать правила техники безопасности при работе с лабораторным оборудованием, нагревательными приборами, химическими реактивами. Экономно и экологически грамотно обращаться с ними. Наблюдать химические явления и фиксировать результаты наблюдений. Формулировать выводы на их основе
80/21	Обобщение и систематизация знаний по теме «Неметаллы»	Выполнять тесты и упражнения, решать задачи по теме. Проводить оценку собственных достижений в усвоении темы.
81/22	Решение задач	Корректировать свои знания в соответствии с планируемым результатом
82/23	Контрольная работа 6 по теме «Неметаллы»	
TEMA 8.	МЕТАЛЛЫ20	
83/1	Щелочные металлы	Объяснять закономерности изменения физических и химических свойств щелочных металлов в зависимости от их атомного номера.

		Характеризовать нахождение в природе, получение и применение щелочных металлов в свете общего, особенного и единичного. Описывать бинарные кислородные соединения щелочных металлов и устанавливать генетическую связь между соединениями. Характеризовать свойства металлов, оксидов, гидроксидов и солей щелочных металлов и их применение.
84/2	Металлы ІБ-группы: медь и серебро	Характеризовать строение атомов, физические и химические свойства меди и серебра. их соединений. Описывать свойства и применение оксидов и важнейших солей серебра и меди. Распознавать катионы меди и серебра.
85/3	Бериллий, магний и щёлочноземельные металлы	Давать общую характеристику элементов IIA-группы на основе их положения в периодической системе элементов Д. И. Менделеева и строения атомов. Устанавливать закономерности изменения свойств в IIA-группе. Характеризовать нахождение в природе, получение и применение щёлочноземельных металлов в свете общего, особенного и единичного. Описывать бинарные кислородные соединения щёлочноземельных металлов и устанавливать генетическую связь между их соединениями. Характеризовать свойства металлов, оксидов, гидроксидов и солей щелочных металлов и их применение.Идентифицировать соединения магния, кальция, бария.
86/4	Жесткость воды и способы её устранения	Характеризовать временную и постоянную жёсткость воды. Устанавливать взаимосвязь между причинами жёсткости и способами её устранения. Описывать вред жёсткой воды. Наблюдать и описывать химический эксперимент
87/5	Цинк	Описывать строение атома, физические химические свойства, получение и применение цинка. Аргументировать амфотерные свойства оксида и гидроксида цинка химическим экспериментом. Характеризовать комплексообразование на примере цинкатов.
88/6	Алюминий и его соединения	Описывать строение атома, физические химические свойства, получение и
89/7	Хром и его соединения	применение алюминия. Аргументировать амфотерные свойства оксида и гидроксида алюминия химическим экспериментом. Характеризовать комплексообразование на примере алюминатов. Характеризовать хром по его положению в периодической системе элементов Д. И. Менделеева и строению атомов, физические и химические свойства, получение и применение хрома. Прогнозировать свойства важнейших

		соединений (оксидов и гидроксидов хрома) в зависимости от степени окисления хрома. Проводить, наблюдать и описывать химический эксперимент
90\	В Марганец	Характеризовать марганец по его положению в периодической системе элементов Д. И. Менделеева и строению атомов, физические и химические свойства, получение и применение марганца. Прогнозировать свойства важнейших соединений (оксидов, гидроксидов и солей марганца) в зависимости от степени окисления марганца
91\/	Железо и его соединения	Характеризовать железо по его положению в периодической системе элементов Д. И. Менделеева и строению атомов, физические и химические свойства, получение (чугуна и стали) и применение железа и его сплавов. Прогнозировать свойства важнейших соединений (оксидов и гидроксидов железа) в зависимости от степени окисления железа. Распознавать катионы железа(II) и (III)
92/1	Практическая работа 10 Решение экспериментальных задач по теме «Получение соединений металлов и исследование их свойств»	Экспериментально получать наиболее распространённые соединения металлов и изучать их свойства
93/1	Практическая работа 11 Решение экспериментальных задач по темам «Металлы» и «Неметаллы»	Выстраивать план анализа качественного состава соединений металлов и неметаллов
94/1	, ,	Выполнять тесты и упражнения, решать задачи по теме.
95/13	теме «Металлы» В Решение задач	Проводить оценку собственных достижений в усвоении темы. Корректировать свои знания в соответствии с планируемым результатом
96/1	· · ·	Корректировать свои знании в соответствии с планируемым результатом
97/1	курсу общей химии	
98/1	6 Обобщение и систематизация знаний по курсу общей химии	
99/1		
100/	18 Резервное время	

	101/19	Резервное время
1	102/20	Резервное время